

Landgate Requirements for Control Surveys by Differential Levelling

GSU-03 Version 3

Π

Value

Survey Sept 2023 Version 3

Document control

Landgate Requirements for Control Surveys by Differential Levelling, Version 3 – Sept 2023 Produced and published by: Location Services/Land Boundaries

Document version history

Date	Author	Version	Revision Notes
11 th Sept 2023	B.Hellmund	3.0	Update to new style and refresh hyperlinks
	Survey	1.0	Initial

Table of contents

Doc	ument control	.1
Doc	ument version history	.1
1.	Connection of Datum	.3
2.	Differential Levelling Quality	.3
3.	Differential Levelling Equipment	.3
4.	Differential Levelling Observation Techniques	. 3
5.	Calibration of Instruments	.4
6.	Calibration of Barcoded Staves	.4
7.	Data Supplied to Landgate	.4
8.	Additional Resources	.5
9.	Appendix A – Example of Abstract	.5
10.	Appendix B – Example of Amendments to Summary Sketch	. 6

1. Connection of Datum

Vertical control surveys shall commence from a verified geodetic survey mark. The SSM or BM used shall be validated using its reference marks (RMs) and the results recorded for each mark used. The validation should ensure mark stability before commencing the survey.

2. Differential Levelling Quality

Differential levelling run should start and finish on the same mark. Any misclose of forward and back level runs of a traverse, including individual bays, must not exceed maximum allowable value as defined by the following formula:

$$r = n\sqrt{k}$$

Where

r = maximum allowable misclose in mm

n = an empirical value describing the outcome (for majority of Landgate Geodetic work it is n = 12 between existing geodetic marks)

k = distance in km

It is expected that modern survey level instruments with calibrated staves can achieve better accuracy than $r = 12\sqrt{k}$ and if misclose values are consistently close to the limits, the survey methodology and instruments should be reviewed and checked.

See <u>ICSM Guideline for Control Surveys by Differential Levelling</u> section 5 for practical example.

3. Differential Levelling Equipment

For equipment requirements refer to <u>ICSM Guideline for Control Surveys by Differential</u> <u>Levelling</u> section 3.1.1.

4. Differential Levelling Observation Techniques

- Staff readings shall be recorded to at least 0.0001m in digital files.
- The length of any sight must not exceed 80 metres.
- Temperature, at the instrument, shall be recorded at the start of each levelling bay between geodetic marks. Generic Bureau of Meteorology provided values are not acceptable.

- The overall distance of levelling line must be recorded. The difference between the sum of the back sight distances and the sum of the fore sight distances should be less than 10m.
- As a rule, two-way levelling is always required. **One-way levelling is only to be used** with the prior approval of Landgate.

For details of the differential levelling techniques refer to <u>ICSM Guideline for Control Surveys</u> by Differential Levelling section 3.1.2

5. Calibration of Instruments

- Instrument (level) collimation shall be checked at appropriate intervals and always before commencing a new survey.
- The Two Peg Test shall be applied, and results recorded. Collimation should be corrected where the error exceeds 0.0015m over a distance of 80m.

6. Calibration of Barcoded Staves

- Bar coded staves shall be calibrated within 2 months prior to commencement of Landgate contract. Calibrated staves used in previous Landgate contracts can continue to be used without additional recalibration for 5 years so long as there is no noticeable wear or damage to the staff.
- The staves should be constructed of wood, fibreglass or invar. The use of aluminium staves is only via prior approval from Landgate.
- Staff bubbles shall be checked to ensure verticality and adjusted as necessary.
- Regular staff calibration should be performed at Landgate's Boya Site
- Procedures and booking sheets for Boya can be found on the staff calibrations website. <u>https://staffcalibration0.es.landgate.wa.gov.au</u>

7. Data Supplied to Landgate

- Levelling plan/sketch.
- Raw digital level files.
- ASCII file of digital level file.
- Completed Abstract of results. See <u>Appendix A</u> for example abstract. Abstract template available <u>here</u>.
- Job report.
- Additional notes if required.
- Scan of amendments to summary sheets of existing marks, noting reference marks found and any changes to the summary sketch highlighted. These can be hand drawn.
 See <u>Appendix B</u> for Example of amendments to summary sketch.

8. Additional Resources

<u>ICSM Standard for Australian Survey Control Network (SP1 v2.2)</u> <u>ICSM Guideline for Control Surveys by Differential Levelling (SP1 v2.2)</u> <u>ICSM Guideline for Adjustment and Evaluation of Survey Control (SP1 v2.2)</u>

9. Appendix A – Example of Abstract

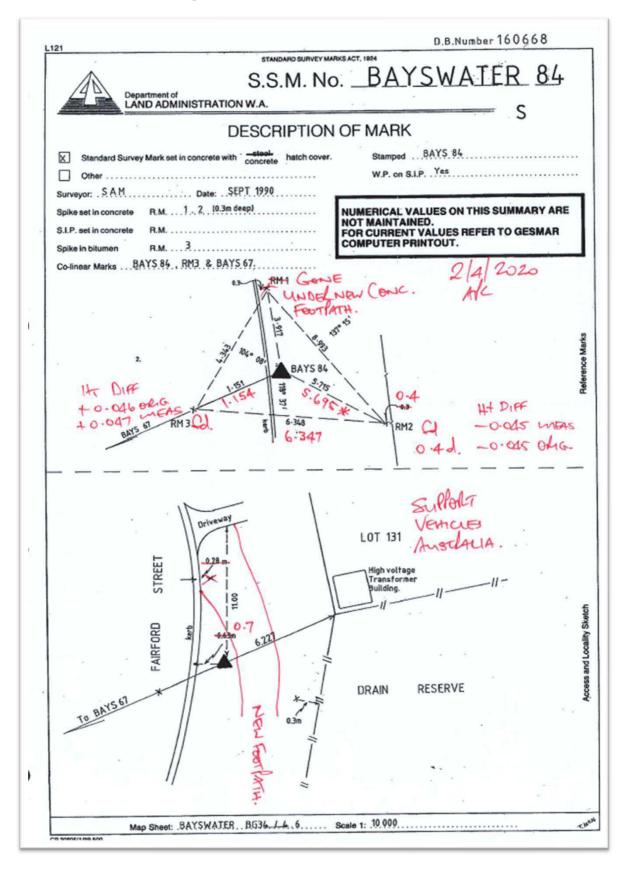

SUF	RVEYOR	L			ABSTRAC	T OF CL	ASS C LEVI	ELLING				Calculation	File GS		
Lev	el Book	No. GS			Job No.							Computer			
Date	e of Surv	ey			Staff No.		C Const =	1.000000		Inst. No.		Date			
							COE =	0.000010		STP(°C) =	25				
0				Total		Difference	in Elevation		Adjustment	El	evation Above A	HD			
Temp	Distance	From BM	To BM	Distance	Forward	Backward		Calibrated					Remarks		
-	km			From		Forward	Mean	Mean	Closure	Observed	BM	Adjusted			
											SSM A	100.000			
23	1.00	SSM A	SSM B	1.00	1.000	-1.000	1.000	1.000	0.003	101.000	SSM B	101.003			
23	2.00	SSM B	SSM C	3.00	-3.000	3.000	-3.000	-3.000	0.010	98.000	SSM C	98.010		Allow	0.021
											SSM B	101.003	From Above		
23	1.00	SSM B	SSM D	1.00	1.000	-1.000	1.000	1.000		1.000	SSM D		-		
											SSM E	100.000	GS xx/xxxx/xx		
23	1.00	SSM E	SSM F	1.00	1.000	-1.000	1.000	1.000		101.000	SSM F				

Figure 1 - Evaluating forward and backwards misclose and adjustment.

SURV	TYOR				ABSTRAC	T OF CLAS	S C LEVEL	LING				Calculation	File GS										
evel	Book No	. GS			Job No.							Computer											
Date of Surve					Staff No.			1.000000		Inst. No.		Date											
+								0.000010	-	STP(°C) =													
				Total		1	in Elevation			Ele	vation Above A	AHD	-										
I	Distance	From BM	To RM	Distance	Forward	Backward		Calibrated	Difference				Remarks										
1	km			From		Forward	Mean	Mean	(Allow 0.010)	Original Diff.	BM	Adjusted		Mean Dist	Meas Az	Orig Dist	Orig Az	Meas Dir	Dist Diff(m)	Az Diff(m)		DBs	
											SSM A												
		SSM A	RM 1		-0.123	-0.125	-0.124		0.001	-0.125	RM 1		(0.4 BGL)	4.814		4.819	12 19 3		-0.005		6,759		
			RM 2		-0.234	-0.236	-0.235		0.002	-0.237	RM 2			4.742		4.738	102 20 0		0.004		0.133	6,740	9.6
T			RM 3		-0.345	-0.343	-0.344		0.003	-0.347	RM 3	1		4.793		4.792	192 21 0		0.001			0.740	
1																							
1											SSM B		New SSM	RO	164 19 12.48			000					
T		SSM B	RM 1		-0.123	-0.125	-0.124				RM 1		New RM (Dsp in Bit)(0.0 BGL)	2.626	54 34 51.48			250 15 39				Ĺ	
1			RM 2		-0.234	-0.236	-0.235				RM 2		New RM (Sp in Conc)(0.3 BGL)	3 728	154 40 35.48			350 21 23			4.922		4.3
+			RM 3		-0.345	-0.343	-0.344				RM 3		New RM (Sp in Conc)(0.3 BGL)		315 50 30.48			151 31 18				6.774	
+			Tur 5		0.040	0.040	0.044				1441.5			5.155	5155655.40			101 01 10					-
+-											SSM C												
+-		SSM C	RM 1		-0.123	-0.125	-0.124		0.001	-0.125	RM 1			4.420	2 24 29.81	4 4 20	192 21 01	000	-0.002	0.004			-
+-		53101 C	RM 2		-0.123	-0.125	-0.124		-0.018	-0.125	RM 2		10.00		4 12 58.81		192 21 01			-0.004	6.078	-	6.8
+-								+					New HD Adopted							-0.004		7.467	0.0
			RM 3 4		-0.385	-0.383	-0.384		-0.037	-0.347	RM 3 4		RM Moved	3.907	8 35 37.81	3.854	308-25-40	116 11 8	0.050	0.011		L	L

Figure 2 - Evaluating RMs, Distances and Azimuths miscloses.

10. Appendix B – Example of Amendments to Summary Sketch

